

BOILING SPRING LAKES DAMS CONSTRUCTION/RECONSTRUCTION

Pre-Application Meeting NC Dam Safety

July 31, 2020

lorth Lake Dam

n Sanford L

Pine Lake Dam

Upper Lake Dam

- Hydrology/Hydraulics and spillways
- Control of water
- Roads and utilities
- Geotechnical exploration and evaluation

Dam	State ID	Hazard Classification*	Design Storm
Sanford	BRUNS-003	High Hazard	1⁄2 PMP
North Lake	BRUNS-001	High Hazard	1⁄3 PMP
Pine Lake	BRUNS-002	High Hazard	1⁄3 PMP
Upper Lake	BRUNS-012	High Hazard	1⁄3 PMP

* Based on coordination with NC Dam Safety to in June 2019.

BSLs H&H Study (Integrated Units - One System)

• Rainfall characterization

mcgill

- Watershed configuration
- Rainfall-runoff modeling
- Dynamic hydraulic modeling
- Evaluation of proposed spillways
- Dam-breach risk analyses and inundation mapping
- Minimum Flow requirements?

- Probable Maximum Precipitation (PMP):
 - Hydrometeorological Reports No. 51 and 52 (HMR 51 and 52)
 - Rainfall total: <u>≈ 50"</u> in 72 hours with a peak of 9.5"
- 100-year Frequency Storm:
 - Predicted National Oceanic and Atmospheric Administration (NOAA) Precipitation Frequency Data Server (PFDS)
 - Rainfall total: <u>14.7"</u> for a 48-hour storm
- Hurricane Florence Precipitation Data:
 - Recorded at the Cape Fear R at Lock #1 Nr Kelly, NC (02105769) station
 - Total recorded: <u>22"</u> during 13 to 16 September 2018
 - 1000-year return storm

Rainfall-Runoff Modeling

1200 Model Setup 1000 800 Flow (cfs) 600 ř. Spring Lake DA-7 DA-8 400 200 Pine Lake Dam 0 1/09/18 051 13/09/18 00 DA-4 🚔 Sanford Dam DA-3 DA-2 North Lake Dam 2000 ۵. 1800 ---DA1 - D A2 1600 -DA3 1400 Middle Lake Dam DA4 (cfs) 1500 1000 Upper Lake Dam DA 5A ¥, DA 5B DA-1 800 - DA 6 600 - DA 7 - DA 8 400 200 0

Runoff hydrographs

- Spillways consist of risers and culverts
- Maintained 2-ft freeboard
 - Upper Lake Dam will be raised to extent practical to increase freeboard
- Middle Lake Dam reconstructed is the worstcase scenario

	Top of Dam or road	Spillway Design	Peak Flow	Peak Water Surface	Freeboard	Riser Structure		
	(ft NAVD88)	Flood	(cfs)	Elevation (ft NAVD88)	(ft)	Weir Length (ft)	Culvert Size	No. of Culverts
							(span x rise) (ft)	
Sanford Dam	38.2	1⁄2 PMP	5385.	35.11	3.09	140	7.5 x 6.5	6
North Lake Dam	40	¹ ∕₃ PMP	848.9	37.9	2.1	55	6 x 6	2
Pine Lake Dam	44	¹ ∕₃ PMP	316.9	40.69	3.31	14	5 x 4	1
Upper Lake Dam	41.3	¹ / ₃ PMP	941.3	40.08	1.22	94	6 x 5	5
SR 87	33.67	100 Yr	1033.8	33.54				

- Breach Setting:
 - Bottom elevation set at the bottom of each lake or downstream normal tailwater for the breach condition, whichever is greater.
 - Bottom width set equal to three times the breach height
 - 2:1 side slopes.
- Spillway Design Flood (SDF) Breach
 - Each Dam individually (SD, NLD, PLD, ULD) to evaluate individual inundation
 - Concurrent breach of all upstream dams (including Middle) during ½ PMP to evaluate effect on Sanford Dam Spillway
 - Concurrent Breach of all dams (including Middle) during ½ PMP to evaluate inundation extent
- Sunny Day Breach
 - Each Dam individually (SD, NLD, PLD, ULD) to evaluate individual inundation
 - Concurrent Breach of all dams (including Middle) to evaluate inundation extent

mcgill Dam-Breach and Inundation Mapping

- Concurrent breach of all dams during ½ PMP
 - No noticeable difference in inundation zones between breach and no-breach conditions

mcgill Dam-Breach and Inundation Mapping

- Concurrent breach of all dams Sunny Day
 - Noticeable difference in inundation between Sunny Day and ½ PMP
- Emergency Action Plan
 - One EAP for all dams
 - Concurrent ½ PMP and Sunny Day breach inundation mapping

- Design for Sanford Dam:
 - Stepped chute
 - Riprap apron

- Wave protection evaluation was performed based on the fetch distance
- Riprap is provided for the upstream faces of all dams
- Limited fetch on downstream faces, no protection provided
 - SR 87 and MLD limit fetch on downstream face of ULD

- Target drawdown rate ≈ 1 ft / day
- Storage-volume relationship for each lake was computed in GIS using the site-specific LiDAR and bathymetric survey
- Sanford Dam bottom drain is about 4 ft above bottom of channel in lake

- Bypass the 10-year storm peak flow around construction area
- Cofferdams used to divert flow through temporary culverts

- Return to pre-breach condition
- Guardrails will be placed on SD, NLD, PLD
- Crowned road with sheet flow to shoulders for NLD and PLD
- Crowned road with gutters and flumes on both sides of SD

- Sanford Dam
 - No underground utilities on SD
 - Power/telecommunication pole bracing in MOTSU
- North Lake and Pine Lake Dams
 - Buried water and telecommunication lines

• Drilling and sampling, In-situ testing, soil and rock laboratory testing

		Sanford Dam	North Lake Dam	Pine Lake Dam	Upper Lake Dam	
Test Boring s	Number	26	4	4	3	
	Depth	15' – 90'	25' – 27'	25'	25'	
CPT	Number	17	3	3	3	
	Depth	22' – 42'	25' – 44'	25' – 59'	12' – 59'	
Rock/R	efusal	Rock at El. 0'	Refusal at El. 0'	Refusal at El. 0'		

• Electrical Resistivity Imaging (ERI) on Sanford Dam

• Electrical Resistivity Imaging (ERI) on Sanford Dam

• Electrical Resistivity Imaging (ERI) on Sanford Dam

CLAYS, OR WET

WEATHERED AND

FRACTURED BEDROCK

Upstream Profile

17

11

• Centerline geotechnical Profile (1 of 2)

• Centerline geotechnical Profile (2 of 2)

Summary of findings at Sanford Dam

- Top of rock at Elevation 0' NAVD88
- Thirteen borings more than 8' in rock
- Four piezometers in rock
- Top layer of rock (calcirudite limestone) described as vuggy, fossiliferous, weak (700 to 2,200 psi)
- Underlain by fossiliferous, fine-to-medium-grained, very weak (600 psi) calcarenite limestone
- The top calcirudite limestone layer provides for a preferential seepage path between the reservoir and the rock layer

- Cutoff wall constructed using a mix-in-place method along the length of the dam
- Bottom elevation of EL -20, which is about a depth of 8 to 10 feet below the bottom of the calcirudite limestone layer

- Vibrating wire piezometers
- Additional measures will be included with permit application